![]() |
Moteur de recherche de fiches techniques de composants électroniques |
|
LM324-N-MIL Fiches technique(PDF) 10 Page - Texas Instruments |
|
|
|
LM324-N-MIL Fiches technique(HTML) 10 Page - Texas Instruments |
10 / 29 page ![]() 10 LM324-N-MIL SNOSD66 – JUNE 2017 www.ti.com Product Folder Links: LM324-N-MIL Submit Documentation Feedback Copyright © 2017, Texas Instruments Incorporated 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The LM324-N-MIL amplifier is specified for operation from 3 V to 32 V (±1.5 V to ±16 V). Many of the specifications apply from –40°C to 125°C. Parameters that can exhibit significant variance with regards to operating voltage or temperature are presented in Typical Characteristics. 8.2 Typical Applications Figure 13 emphasizes operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V+/2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated. 8.2.1 Non-Inverting DC Gain (0 V Input = 0 V Output) *R not needed due to temperature independent IIN Figure 13. Non-Inverting Amplifier with G = 100 8.2.1.1 Design Requirements For this example application, the required signal gain is a non-inverting 100x±5% with a supply voltage of 5 V. 8.2.1.2 Detailed Design Procedure Using the equation for a non-inverting gain configuration, Av = 1+R2/R1. Setting the R1 to 10 kΩ, R2 is 99 times larger than R1, which is 990 kΩ. A 1MΩ is more readily available, and provides a gain of 101, which is within the desired specification. |
Numéro de pièce similaire - LM324-N-MIL |
|
Description similaire - LM324-N-MIL |
|
|
Lien URL |
Politique de confidentialité |
ALLDATASHEET.FR |
ALLDATASHEET vous a-t-il été utile ? [ DONATE ] |
À propos de Alldatasheet | Publicité | Contactez-nous | Politique de confidentialité | Echange de liens | Fabricants All Rights Reserved©Alldatasheet.com |
Russian : Alldatasheetru.com | Korean : Alldatasheet.co.kr | Spanish : Alldatasheet.es | French : Alldatasheet.fr | Italian : Alldatasheetit.com Portuguese : Alldatasheetpt.com | Polish : Alldatasheet.pl | Vietnamese : Alldatasheet.vn Indian : Alldatasheet.in | Mexican : Alldatasheet.com.mx | British : Alldatasheet.co.uk | New Zealand : Alldatasheet.co.nz |
Family Site : ic2ic.com |
icmetro.com |